Hyperspectral Small Target Detection by Combining Kernel PCA with Linear Mixture Model  被引量:1

在线阅读下载全文

作  者:GUYanfeng ZHANGYe 

机构地区:[1]DepartmentofInformationEngineering,HarbinInstituteofTechnology,Harbin150001,China

出  处:《Chinese Journal of Electronics》2005年第1期130-134,共5页电子学报(英文版)

摘  要:In this paper, a kernel-based invariant detection method is proposed for small target detection of hyperspectral images. The method combines Kernel principal component analysis (KPCA) with Iinear mixture model (LMM) together. The LMM is used to describe each pixel in the hyperspectral images as a mixture of target,background and noise. The KPCA is used to build back-ground subspace. Finally, a generalized likelihood ratio test is used to detect whether each pixel in hyperspectral image includes target. The numerical experiments are performed on hyperspectral data with 126 bands collected by Airborne visible/infrared imaging spectrometer (AVIRIS).The experimental results show the effectiveness of the proposed method and prove that this method can commendably overcome spectral variability and sparsity of target in the hyperspectral target detection, and it has great ability to separate target from background.

关 键 词:目标检测 LMM KPCA 图像传感器 

分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象