检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]克山师范专科学校
出 处:《哈尔滨师范大学自然科学学报》1994年第1期36-40,共5页Natural Science Journal of Harbin Normal University
基 金:黑龙江省教育委员会青年科研基金资助课题
摘 要:定义σ-根和σ-半单类并给出它们的特征,得到根与半单类的新刻划。A relation σ of associative rings is called an H-Relation if σ satisfies the proper- ties:(1)IσR implies I is a subring of R.(2)if IσR and (?) is a homomorphism of R,then and J is an ideal of R, then . (4)IσR whenever I is an ideal of R. A radical class r is defined a σ-radical if for any ring R and IσR and Ier, the ideal I-R of r generated by I is in r. In this paper the following results are obtained: Theorem 1 Let σ is a H-relation, a rings class r is a σ-radical if and only if r satisfies: (i)r is hoinomorphically closed. (ii) if every onzero homomorphic image of a ring R contain a nonzero σ-subring in r, the itself is in r. As a straight Consequence, theorem 1 positively answer the open problem 1 raised in F.A.Szasz's'radicals of rings' in another mathod, thus we obtain a new characterization of radical class. Theorem 2 A rings class S is in a σ-Semisimple class for an σ-radical if and only if s satisfies: (i) everynonzero σ-subring of a.ring R in s can be homomrphically mapped on to a nonzero ring from s. (i) if every nonzero σ-subring of a ring R can be homomorphically mapped on to a nonzero ring from s, then R belong to the class s. Theorem 3 A rings class s is a semisimple class if and only if s satisfies; (s1) if R∈s, then every nonzero accessible subring of R has a nonzero homomorphic image in s. (s2) if every nonzero accessible subring of R has a nonzero homomorphic image in s, then R∈s.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.239