σ—根与σ—半单类  

σ-RADICALS AND σ-SEMISIMPLE CLASSES

在线阅读下载全文

作  者:王尧[1] 任艳丽[1] 

机构地区:[1]克山师范专科学校

出  处:《哈尔滨师范大学自然科学学报》1994年第1期36-40,共5页Natural Science Journal of Harbin Normal University

基  金:黑龙江省教育委员会青年科研基金资助课题

摘  要:定义σ-根和σ-半单类并给出它们的特征,得到根与半单类的新刻划。A relation σ of associative rings is called an H-Relation if σ satisfies the proper- ties:(1)IσR implies I is a subring of R.(2)if IσR and (?) is a homomorphism of R,then and J is an ideal of R, then . (4)IσR whenever I is an ideal of R. A radical class r is defined a σ-radical if for any ring R and IσR and Ier, the ideal I-R of r generated by I is in r. In this paper the following results are obtained: Theorem 1 Let σ is a H-relation, a rings class r is a σ-radical if and only if r satisfies: (i)r is hoinomorphically closed. (ii) if every onzero homomorphic image of a ring R contain a nonzero σ-subring in r, the itself is in r. As a straight Consequence, theorem 1 positively answer the open problem 1 raised in F.A.Szasz's'radicals of rings' in another mathod, thus we obtain a new characterization of radical class. Theorem 2 A rings class S is in a σ-Semisimple class for an σ-radical if and only if s satisfies: (i) everynonzero σ-subring of a.ring R in s can be homomrphically mapped on to a nonzero ring from s. (i) if every nonzero σ-subring of a ring R can be homomorphically mapped on to a nonzero ring from s, then R belong to the class s. Theorem 3 A rings class s is a semisimple class if and only if s satisfies; (s1) if R∈s, then every nonzero accessible subring of R has a nonzero homomorphic image in s. (s2) if every nonzero accessible subring of R has a nonzero homomorphic image in s, then R∈s.

关 键 词: 半单类 Σ-根 σ-半单类  

分 类 号:O153.3[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象