检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:李小英[1]
出 处:《科学通报》1994年第7期577-579,共3页Chinese Science Bulletin
摘 要:Uhlenbeck和Chern,Wolfson都讨论了2维球面S^2到复Grassmann流形G_k(C^N)的调和映照的构造.Uhlenbeck把导找S^2到G_k(C^N)的所有调和映照的问题转化为解一阶偏微分方程组,即证明了:S^2到G_k(C^N)的任意调和映照都能由常值映照通过有限次称为“加一个Uniton”的运算获得.其中Uniton是平凡丛(?)~N=S^2×C^N的满足一阶偏微分方程组的子丛(下面给出定义).Uhlenbeck通过“Loop群”构造获得上述结果.Valli在文献[3]中给出简单证明,我们采用该文中记号.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28