检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《科学通报》1994年第12期1057-1058,共2页Chinese Science Bulletin
基 金:国家自然科学基金;国家教委博士点基金资助项目
摘 要:本文主要讨论紧度量空间(X,d)上线性算子的量化逼近定理.这方面的研究工作起始于Mamedov等在50年代末的一系列文章之后,1964年Newman和Shapiro对Menger引进的距离凸空间,80年代Pozo对他引入的具凹形变系数的紧度量空间分别建立了类似的量化定理.以上工作中起关键作用的是连续模的下述性质:ω(f,λω)≤(1+λδ)ω(f,ε)(这里δ指凹形变系数,对距离凸空间有δ=1)而对一般的紧度量空间,连续模不满足这个性质.为此,本文将引入连续模的一种新的控制函数(?)(f,ε),并由此建立了一般紧度量空间上的量化逼近定理.这种控制函数满足ω(f,ε)≤(?)(f,ε)及(?)(f,λε)≤(1+δλ)(?)(f,ε),并且在下述意义下是最佳的,即对于单调函数g(f,ε),如果满足ω(f,ε)≤g(f,ε)及(f,λε)及g(f,λε)≤(1+λδ)g(f,ε),则有(?)(f,ε)≤g(f,ε).
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28