检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:钟怀杰[1]
出 处:《数学学报(中文版)》1994年第4期563-569,共7页Acta Mathematica Sinica:Chinese Series
基 金:福建省自然科学基金资助课题
摘 要:给出 Banach空间列{Xi}i=1∞的 lp乘积B-凸的特征刻划, 证明B-凸空间上的每个黎斯算子可West分解,即分解成一个紧算子和一个拟幂 零算子的和.Davidson K.R. and Herrero D.A. proved that every Riesz operator T on a Banach space having F.D.p. B.D. has West decomposition, i.e. T can be decomposed as a sum of a compact operator and a quasinilpotent operator [Indiana Univ. Math. J. 35 (1986), 333-343; MR 87f: 47023]. Later the author extended their result to spaces Lp(u), 1 < p < ∞ (MR 90c: 47031). In this paper, first, the author proves that for the sequence {Xi} of Banach spaces, the Banach space (∑Xi)lp., (1 < p < ∞) is B-convex if and only if {Xi} are so called 'Uniformly' B-convex, i.e. there exists an integer n ≥ 2 such that supB(n, Xi) < n where B(n, Xi) is the B-convexity constant of Xi for n. Secondly, the author proves that every Riesz operator on a B-convex space has West decomposition, applying local theory of Banach spaces. In view of the facts that every Banach space X has a type p(X), 1 ≤ p(X) ≤ 2 and that type p(X) > 1 is equivalent to X being B-convex, this result explains that further research of the problem of West decomposition of Riesa operators may be limited to the operators on type-1 spaces.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.158.72