检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院空间科学与应用研究中心,北京100080 [2]中国科学院武汉物理与数学研究所
出 处:《空间科学学报》2005年第2期99-103,共5页Chinese Journal of Space Science
基 金:中国科学院知识创新工程项目资助(242305AS)
摘 要:由中国武汉电离层台站和澳大利亚Hobart台站的电离层F2层临界频率(f0F2)的资料,利用三层 前向反馈神经网络(BP网络),提出一种提前24 h预测,f0F2的方法,该方法以前5天观测的,f0F2数据拟合 的5个系数以及太阳活动参数作为输入,以当天24 h的,f0F2作为输出对网络进行训练,训练好的网络可以实 现对,f0F2提前24 h的预报.预测结果显示,利用神经网络预测的,f0F2与实际观测结果变化趋势较一致,并且 比IRI的计算结果更加准确.误差分析表明,在南半球Hobart(-42.9°,147.3°)台站比中国武汉站(30.4°, 114.3°)的结果要好,在低年比高年要好,在冬夏季节比春秋季节稍好.本文说明利用神经网络对电离层参量进 行预报是一种切实可行的方法.The use of feed-forward back propagation neural networks to predict ionospheric F2 layer critical frequency, f0F2, 24 h ahead, have been examined. The data we used are from Wuhan ionospheric station, China, and Hobart ionospheric station, Australia. The data period is from 1970 to 1990 at Wuhan and from 1962 to 1990 at Hobart. The five day's measurements of f0F2 before the day that need forecast are reduced to five coefficients. The inputs used for the BP neural network are the coefficients, the solar 10.7cm flux index, and the outputs are the day's 24 h observed f0F2 data. The trained net then can forecast f0F2 24 h advance. The result indicates the predicted f0F2 using NN has good agreement with observed data. Comparison with IRI model suggests that NN method is more accurate than IRI. In addition, the error analysis indicates that predicted f0F2's Root-Mean-Square Error (RMSE) is smaller in Hobart than in Wuhan, smaller in low solar activity than in high solar activity, smaller in winter and summer than in spring and autumn. In conclusion, using neural network to predict ionospheric parameters is a feasible method.
关 键 词:神经网络 电离层预报 F0F2 太阳活动参数 空间探测 预报方法
分 类 号:P352[天文地球—空间物理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222