检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]淮海工学院数理科学系,江苏连云港222005 [2]徐州师范大学数学系,江苏徐州221009
出 处:《南京师大学报(自然科学版)》2005年第1期36-41,共6页Journal of Nanjing Normal University(Natural Science Edition)
基 金:国家自然科学基金资助项目(10371079)
摘 要: 将建立在dcpo上的双有限domain等概念推广到相容定向完备偏序集上,定义了相容定向完备偏序集上的逼近单位、有限分离、相容双有限domain等概念,给出了相容双有限domain的等价命题.并从范畴学的角度考察证明了以相容双有限domain为对象,Scott连续映射为态射的范畴CBF是笛卡儿闭范畴.还讨论了相容定向完备偏序集及相容代数domain上的几个性质.This paper generalizes some concepts such as bifinite domains from dcpos to consistently directed complete posets, defines concepts of approximate identity, finitely separated, consistently bifinite domains on consistently directed complete posets, and provides an equivalent proposition of consistently bifinite domains. Then it inspects and proves that the category CBF of consistently bifinite domains with Scott-continuous function is Cartesian closed in terms of category theory. In the end, It also discusses some properties on consistently directed complete posets and consistently algebraic posets
关 键 词:相容代数domain 相容双有限domain 笛卡儿闭范畴
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15