检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《控制与决策》2005年第4期377-381,共5页Control and Decision
基 金:教育部博士点专项基金项目(20030251003).
摘 要:对微粒群优化算法(PSO)进行分析,提出一种增强型微粒群优化算法(EPSO).用EPSO和PSO对几种常用函数的优化问题进行测试比较,结果表明EPSO比PSO更容易找到全局最优解,优化效率和优化性能明显提高.将EPSO用于催化裂化装置主分馏塔粗汽油干点软测量,建立了基于EPSO算法的粗汽油干点神经网络软测量模型.研究结果表明,基于EPSONN的软测量模型比基于BPNN的软测量模型具有更高的精度和更好的性能.An enhanced particle swarm optimization algorithm (EPSO) is proposed based on the analysis of PSO. Both EPSO and PSO are used to resolve several well-known and widely used test function optimization problems. Results show that EPSO has greater efficiency, better performance and more advantages in many aspects than PSO. Then, EPSO is applied to train artificial neural network (NN) to construct a practical soft-sensor of gasoline endpoint of main fractionator of fluid catalytic cracking unit. The obtained results show that the proposed method is feasible and effective in soft-sensor of gasoline endpoint.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222