检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]哈尔滨师范大学
出 处:《哈尔滨师范大学自然科学学报》2005年第1期4-6,共3页Natural Science Journal of Harbin Normal University
摘 要:Chao等[1],韩伯棠[2]和ThomasWanner[3]分别仅用色多项式表征了q-树和q-树的(一次)整子图;刘象武等[4]又表征了当最小度δ(G)≠q-3时,q-树的二次整子图的色性.本文证明了n阶q-树的三次整子图G的色多项式为P(G;λ)=λ(λ-1)…(λ-q+1)4(λ-q)n-q-3且G为q+1色图,色分划数为8;反之,在G的一个q+1着色下,若恰有一个二色子图不连通,则G是n阶q-树的三次整子图.Chao et al. ~[1] , Han Botang ~[2] and Thomas Wanner ~[3] characterized q-tree and the integral subgraph of q-tree only by their chromatic polynomials respectively. Then Liu Xiangwu et al. characterized the two-degree integral subgraph of q-tree when the least degree of the subgraph satisfied δ(G)≠q-3 in [4]. In this paper, we show the chromatic polynomial of three-degree integral subgraph G of q-tree on n vertices is P(G;λ)=λ(λ-1)…(λ-q+1)4(λ-q)~n-q-3 . And G is a(q+1)-colorable graph, its number of color partitions is eight. On the contrary, under a(q+1) colored, if it has just one disconnected two color subgraph, then G which has the chromatic polynomial like above is a three-degree integral subgraph of q-tree on n vertices.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.46