检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南开大学信息技术与科学学院
出 处:《控制与决策》2005年第6期717-720,共4页Control and Decision
基 金:山东省教育厅科技计划项目(J02F06;J04A12).
摘 要:基于免疫系统的动力学模型,根据一类抗体可结合多个抗原表位并逐步达到亲和度成熟的机理,研究并实现了一种多模态免疫进化算法(MIEA).算法的主要算子包括正选择、记忆细胞产生、超变异和抗体相似性抑制.对不同的多峰值函数进行的仿真实验证明,算法能够找到多模态问题的全部最优解或尽可能多的局部最优解.通过与同类算法进行比较和计算复杂性分析表明,该算法不仅计算量小、具有更好的搜索性能,而且无需任何先验知识,可实现真正的自适应搜索.Based on immune dynamic model, a multi-modal immune evolution algorithm (MIEA) is designed. The algorithm is inspired by the mechanism in which a kind of antibody can identify multi-epitope of an antigen and gradually accomplish affinity maturation in the evolutionary process. The main operators of the algorithm include positive selection, memory cells producing, hyper-mutation and similar antibodies suppression. The simulation results show that it can find out all optimal solutions and local optimal solutions as many as possible and can realize adaptive searching without any transcendental presumptions.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.4