一种改进的高斯混合模型算法  被引量:7

An Improved Algorithm of GMM

在线阅读下载全文

作  者:许雯[1] 董林[1] 田家斌[1] 

机构地区:[1]北方计算中心,北京100091

出  处:《信息工程大学学报》2005年第2期65-67,共3页Journal of Information Engineering University

摘  要:建立声学模型是说话人识别技术的重要环节,一种好的建模方法对说话人识别系统的识别率具有极其重大的影响。本文介绍了一种改进的高斯混合模型算法———将聚类算法与传统高斯混合模型结合起来的建模方法,并对此种建模方法得出的识别效果与传统的高斯混合模型进行了比较。从对比结果可以看出,基于聚类的高斯混合模型的说话人识别相对于传统的高斯混合模型在识别率上有所提高。Characteristic modeling is an important link in technology of speaker identification, a nice modeling method impact on the performance of speaker identification system. This article introduces an improved algorithm of GMM which combines classical GMM with clustering algorithm, and compares their performance. From the results, the article concludes that GMM based on clustering algorithm has higher performance than classic GMM algorithm.

关 键 词:高斯混合模型 聚类算法 EM算法 

分 类 号:TN912.34[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象