基于Fuzzy ARTMAP神经网络的高分辨率图象土地覆盖分类及其评价  被引量:16

High Resolution Land Cover Image Classification and Evaluation Based on Fuzzy ARTMAP Neural Network

在线阅读下载全文

作  者:刘正军[1] 王长耀[1] 延昊[1] 牛铮[1] 王雷[2] 

机构地区:[1]中国科学院遥感应用研究所遥感信息科学重点实验室,北京100101 [2]南京大学城市与资源学系,南京210093

出  处:《中国图象图形学报(A辑)》2003年第2期151-154,i004,共5页Journal of Image and Graphics

基  金:国家重点基础研究发展规划项目 ( G2 0 0 0 0 7790 0 ) ;中国科学院知识创新工程重大项目 ( KZCX1-SW-0 1)

摘  要:主要讨论了基于 Fuzzy ARTMAP神经网络的高分辨率遥感图象土地覆盖分类方法及其实践 .首先介绍了 Fuzzy ARTMAP神经网络的原理 ,然后用 SPOT XS图象试验数据进行土地覆盖分类 .分类结果与传统的最大似然监督分类 (ML C)、反馈式 (Back Propagation,BP)神经网络的分类结果进行了比较 .通过抽取 5 0 0个样点对 3种分类结果进行精度评价表明 ,Fuzzy ARTMAP神经网络相对其他两种方法 ,分类精度均有不同程度的改善 ,具有更好的分类结果 ,总分类精度比 ML C和 BP算法分别提高 17.4 1%、7.32 % .最后 ,对不同分类方法对于土地覆盖分类结果的影响进行了评价和分析 .试验表明 ,FuzzyThis paper mainly discussed a high resolution land cover Image classification algorithm based on Fuzzy ARTMAP Neural Network, experiment and it's evaluation. We firstly introduced the fundamental theory of Fuzzy ARTMAP Neural Network classifier. Followed is a land cover classification experiment on SPOT XS high resolution image. Three algorithms were tested: the Maximum likelihood Classification (MLC), the Back Propagation (BP) Neural Network, and the Fuzzy ARTMAP Neural Network. Individual classification result was presented. We compared these different classification results and evaluated their accuracy through manually interpreting five hundred of randomly selected sample points. Our assessment shows that Fuzzy ARTMAP has a comparably better result, with overall classification accuracy higher 17 41%, 7 32% than MLC and BP. We also analyzed some misclassification between tillage and forest classes by different classification methodologies and gave some explanations. Finally, a superiority of the Fuzzy ARTMAP Neural Network classifier on high resolution land cover classification is concluded.

关 键 词:计算机图象处理 Fuzzy ARTMAP 神经网络 遥感 土地覆盖分类 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象