检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学信息科学与工程学院,湖南长沙410083
出 处:《中南大学学报(自然科学版)》2005年第3期475-480,共6页Journal of Central South University:Science and Technology
基 金:国家自然科学基金资助项目(50275150);中国科学院机器人学开放研究实验室基金资助项目(RL200002)
摘 要:将基于复数编码的遗传算法引入竞争性协进化的理论研究中,提出一种竞争性协进化的新策略,即在仿真实验中,采用2个基于神经网络结构控制的移动机器人,并将它们投入到一个陌生的环境中。其中,一个机器人扮演猎手,另一个扮演猎物,猎手对猎物进行捕捉,最终得到每一代的最好猎手机器人和最好猎物机器人以及它们的适应度曲线。在这个竞争性协进化系统中,基于复数编码的遗传算法主要用于对机器人控制系统的神经网络进行进化。计算机仿真结果表明,与基本遗传算法相比,基于复数编码的遗传算法具有更强的进化能力。The genetic algorithm with complex-valued encoding was introduced to the research of competitive co-evolution theory, and a new strategy for competitive co-evolution was proposed. In the simulation experiments, two mobile robots with neural networks control structure were put into an unknown simulation environment. One of them played the part of hunter and the other played the prey; the hunter always tried to catch the prey. The best hunter and the best prey of every generation were obtained from the experiment, including the fitness curves of them. The genetic algorithm with complex-valued encoding was mainly used to evolve the neural networks of controller of robots. The experiment results show that the genetic algorithm with complex-valued encoding has stronger evolutionary capacity compared with the general genetic algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249