检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《工程力学》2005年第3期26-30,38,共6页Engineering Mechanics
摘 要:运用微分算子形式推导出了时域内同时考虑拉伸与剪切粘性及转动惯量的粘弹性梁在切向均布随从力作用下的统一屈曲运动微分方程,该方程具有广泛的通用性,适合于任一粘弹性模型。进而得到三参量模型粘弹性非保守梁的屈曲运动微分方程。采用幂级数法建立两端简支、两端固定和左端简支右端固定等支承条件下三参量模型粘弹性梁离散化的动力方程——复特征方程。通过拟牛顿法,得到了一阶复特征值的负实部(衰减系数)及虚部(衰减振动频率)与切向均布随从力的变化曲线。The unified differential equation of buckling and motion of viscoelastic beams under uniformly distributed follower forces in time domain is established by differential operators. The equation has extensive applicability and is suitable for various viscoelastic models. The governing equation of a three-parameter viscoelastic model is obtained. The dynamic descretization equation (complex eigenvalue) of viscoelastic beams of three-parameter model under follower forces is derived by power series method. Boundary conditions such as simply-simply, clamped-clamped and simply-clamped ends are considered. The curves of negative real part (decaying coefficient) and imaginary part (decaying vibration frequency) versus uniformly distributed follower forces are obtained using quasi-Newton method.
关 键 词:粘弹性梁 动力稳定性 幂级数法 随从力 微分算子
分 类 号:O32[理学—一般力学与力学基础]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28