检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《控制与决策》2005年第5期549-552,共4页Control and Decision
摘 要:为了更有效地处理过程非线性、多输入和数据共线性等复杂特性,提高模型的推广能力和精度,提出了混合支持向量回归机-偏最小二乘法(SVR-PLS)方法.该方法兼具SVR和PLS的优点,用PLS进行特征提取,用SVR建立PLS的内部模型.对工业丙烯腈生产过程丙烯腈收率软测量建模的应用表明,采用该方法建立的软测量模型,在模型精度、推广能力等方面明显优于一些传统软测量建模方法,满足工业应用要求.A hybrid SVR-PLS method is proposed to deal with complicated process with nonlinearity and a large number of correlated inputs. The SVR-PLS method, which has merits of both SVRs and PLS, is an integration of support vector regression machine and partial least squares. The PLS outer projection is used as a dimension reduction tool to remove collinearity and the SVRs are trained to capture the nonlinearity in the projected latent space. Soft sensor modeling of acrylonitrile yield is established using SVR-PLS method. The generalization ability and accuracy of the soft sensor using the method proposed is superior to traditional methods.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117