检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《图象识别与自动化》2005年第1期35-41,共7页
摘 要:提取稳定的笔划结构是汉字结构识别方法的前提,合适的样本特征矢量参数分布模式是统计识别方法的基础。本文将这两个看似不相关的问题联系在一起,提出了基于笔划方向特征和非对称分布的手写体汉字识别模型。一种从手写体汉字骨骼图像上提取分叉点的改进算法,可以保证特征点提取的完整性,从而保证笔划提取的可靠性,并直接从笔划结构上提取统计识别特征矢量。基于类间样本分布的差异以及类内样本分布的非对称性,采用基于PCA的非对称分布手写体汉字识别模型。实验表明,基于笔划方向特征和非对称分布的统计识别模型具有优良的识别性能。
关 键 词:非对称分布 手写体汉字识别 特征和 识别模型 识别方法 特征矢量 特征点提取 汉字结构 分布模式 改进算法 笔划提取 统计识别 非对称性 识别性能 样本 分叉点 可靠性 PCA 图像
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.169