一种改进的SVM算法  被引量:6

An Improved SVM Algorithm

在线阅读下载全文

作  者:郑春颖[1] 

机构地区:[1]空军工程大学导弹学院,陕西三原713800

出  处:《航空计算技术》2005年第2期6-8,共3页Aeronautical Computing Technique

基  金:陕西省自然科学研究项目基金资助(2004F36)

摘  要:当训练集的规模很大特别是支持向量很多时,支持向量机的学习过程需要占用大量的内存,寻优速度非常缓慢,这给实际应用带来了很大的麻烦。文献[4]提出了一种针对大规模样本集的学习策略,该方法虽大幅降低了学习的代价,但存在着一个致命的弱点:如果初始样本集选择不当,SVM的分类精度将得不到保障。基于此,本文引入了“最远邻”,对文献[4]中算法进行了改进。实验表明,采用这种改进的算法不仅保留了文献[4]方法的优点,而且这样获得的分类器的分类精度完全可以与直接通过大规模样本集训练得到的分类器的分类精度相媲美,甚至更优。When training set is very large,espetially,SVM are many,the process of learning requires a great deal of EMS memory,and the speed of count is very slow,this bings big trouble in practice applications.The literature[4]bings forward a learning stategy aimed at cosmically training set.Although this method largly reduces the cost of learning,it exist a deadiness weakness:if the choice of original training set is improper,the classify precision of SVM will not be guaranteed.So this article improves on the literature [4] through introduce the method of 'the farthest neighbors'.Experiment shows that this improving strategy not only holds the excellence of literature [4],but also obtains a classifier that has the same accuracy as (even better than) classifier by literature[4].

关 键 词:支持向量机 训练集 分类精度 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象