检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学交通学院,广东广州510641 [2]江西理工大学机电工程学院,江西赣州341000
出 处:《中国公路学报》2005年第3期90-93,共4页China Journal of Highway and Transport
基 金:国家自然科学基金项目(60064001);广东省自然科学基金项目(011701)
摘 要:针对城市中心区交叉口交通流分布的特点,综合考虑本相位和相邻相位车道上的车辆排队长度(以下简称“队长”),应用模糊控制和神经网络具有的学习功能,提出了一种孤立交叉口多相位自适应模糊控制算法,该算法采用两个规则前件进行模糊推理,并给出了基于3层神经网络实现的模糊控制器的网络结构及其改进的BP网络训练算法和运行程序,结合已有类似研究成果进行了仿真比较研究,结果表明:该控制方法在信号周期自动调节和减少车辆延误方面都有明显改进,在实现城市交叉口智能控制中具有推广应用价值。According to the traffic flow features of intersections in downtown of urban, and considering the vehicle queues of the controlled phase and the relative neighboring phases comprehensively, a multi-phase adaptive control algorithm is put forward based on the learning ability of fuzzy neural control. This adaptive control algorithm does fuzzy reasoning by two preconditions and with the improved BP algorithm, a 3-layer neural network is constructed to realize the adaptive fuzzy controller in road intersection by considering the length of the queue on the contiguous phase lanes. Finally, compared with the similar results in references, simulation research shows that the fuzzy neural controller can not only decrease the average vehicle delay but also adjust the signal period automatically, and this means that the adaptive control algorithm presented in this paper can be popularized in urban intersection intelligent control.
分 类 号:U491.51[交通运输工程—交通运输规划与管理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.149.239.180