检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邱建新[1] 张士宏[2] 李国禄[1] 李章刚[2] 张金利[3]
机构地区:[1]河北工业大学,天津300130 [2]中国科学院金属研究所,沈阳110016 [3]中国科学院精密铜管工程研究中心,新乡453000
出 处:《塑性工程学报》2005年第4期76-79,共4页Journal of Plasticity Engineering
基 金:河南省杰出人才创新基金项目(0421000700)
摘 要:内高压成形技术是以轻量化和一体化为特征的一种空心变截面轻体构件的先进制造技术。目前,内高压成形技术越来越受到人们的关注,特别是汽车制造企业。管材的内高压成形过程与很多因素有关,其中施加在管件内部的压力与轴向进给量之间的配比关系尤为重要,对两者的匹配关系进行优化是内高压成形面临的重要课题。传统的优化方法需要大量的模拟计算,耗时多且不易掌握。针对这一问题,该文提出了将均匀设计法、神经网络和遗传算法相结合进行参数优化,既利用了均匀设计试验的均匀可靠性,又运用神经网络的非线性映射、网络推理和预测功能,最后发挥遗传算法的全局优化特性,得出了最优结果,并直接为实际生产提供了可靠的参数依据。Internal high pressure forming is an advanced technology characterized by lightweight and integrity,which can be used to manufacture hollow structural components and “ Vari-Form” parts. At present, people pay more attention to internal high pressure forming, especially some automobile enterprises.The process of tube hydroforming relates to many factors, among which the matching relation between the internal pressure and axial feeding is particularly important, The optimization of the matching relation is an important subject to internal high pressure forming.Traditional optimization methods need a lot of simulation.These methods are time-consuming and hard to be put into practice.Aiming for this problem, this paper proposes using combination of uniform design, neural network and genetic algorithm to optimize process parameters.This method uses not only the reliability of uniform design and the nonlinear mapping, network reasoning and predicting of the neural networks, but also the global optimal characteristics of genetic algorithm.Finally, the optimal result can be found out and offers a reliable parameter basis for production directly.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15