检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学通信与控制工程学院,江苏无锡214036
出 处:《计算机测量与控制》2005年第8期799-801,826,共4页Computer Measurement &Control
基 金:<轻工发酵先进控制与优化软件技术平台>课题项目(2001BA204B01-03)。
摘 要:支持向量机是基于统计学习理论的新一代机器学习技术。由于使用结构风险最小化原则代替经验风险最小化原则,使它较好的解决了小样本情况下的学习问题。又由于其采用了核函数思想,使它把非线性问题转化为线性问题来解决,降低了算法的难度,具有全局最优、良好泛化能力等优越性能,得到广泛的研究。基于上述特性提出了一种基于支持向量机的非线性模型预测控制结构,其中使用遗传算法来求解预测控制律,随后用计算机仿真证明了此控制算法的正确性和有效性。Support Vector Machines (SVM) are a new- generation machine learning technique based on the statistical learmng theory. They can SOlVe small - sample learning problems better by using Structural Risk Minimization in place of Experiential Risk Minimization. Moreover, SVM can change a nonlinear learning problem into a linear learning problem in order to reduce the algorithm complexity by using the kernel function idea. They have recently attracted growing research interest due to their obvious advantage such as good generalization ability, unique and globally optimal SOlutions. Based on the characteristics of SVM a nonlinear predictive control framework is presented, in which nonlinear plants are modeled on a support vector machine. The predictive control law is derived by genetic algorithm. At last a simulation example is given to demonstrate the proposed approach.
分 类 号:TP274[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28