基于SVM的管网状态估计模型  被引量:3

State estimation model of water distribution network based on SVM

在线阅读下载全文

作  者:俞亭超[1] 张土乔[1] 吕谋[2] 

机构地区:[1]浙江大学土木工程学系,浙江杭州310027 [2]青岛建筑工程学院环境工程系,山东青岛266000

出  处:《哈尔滨工业大学学报》2005年第9期1205-1208,共4页Journal of Harbin Institute of Technology

基  金:国家自然科学基金资助项目(50078048).

摘  要:为建立未知节点压力和可知监测信息之间的管网状态估计模型,应用支持向量机算法,建立基于支持向量机的管网状态估计模型和测压点压力宏观模型.经仿真分析,SVM模型90%以上预测数据的绝对误差控制在0.01MPa;与BP神经网络模型相比,同样的样本集均方误差情况下,其测试集均方误差一般比BP神经网络精度高.杭州市管网的实例计算中,85%以上测压点预测数据的相对误差都在5%以内,结果相当理想.The state estimation model of water distribution network, which establishes the relation between unknown junction pressure of pipes and known monitor information, can been seen as a nonlinear function Estimator implementing the nonlinear mapping of input and output data. Moreover, support vector machine (SVM) is a good nonlinear function estimator. SVM is used to establish a state estimation model and a macroscopic model of monitor pressures. According to simulating analysis, the absolute error of 90% forecasting data is smaller than 0. 01 MPa. Compared with BP neural network, under the same mean square error of sampies, the SVM approach has higher precision of the mean square error of testing sets. The application examples in Hangzhou city show that the relative error of 85% forecasting junction pressure is smaller than 5%, which is considerably Deflect.

关 键 词:支持向量机 给水管网 状态估计 

分 类 号:TU991.33[建筑科学—市政工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象