检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄洪艺[1]
出 处:《厦门大学学报(自然科学版)》2005年第5期610-612,共3页Journal of Xiamen University:Natural Science
摘 要:首先介绍一种更一般的M bius变换及其实数形式,接着引入半径为r的球变形为半径为R的球的映射.在该映射下,证明了一偏微分方程在形式上保持不变,这可看作拓广的Laplace方程不变性的证明.此外,将单位球上Poisson核的4个重要性质推广至半径为r的球上.利用拓广的Laplace方程不变性与Poisson核满足拓广的Laplace方程的特性,证明了半径为r的球上的Poisson积分公式在球内适合于拓广的Laplace方程;利用Poisson核的其它特性,证明积分结果满足一极限条件.从而完全求得半径为r的球上Dirichlet问题的解.First of all, MObius transformation and the real number form of it were introduced in the n-dimensional space. Then a mapping y of a sphere of radius r to a sphere of radius R was introduced. Under the mapping,a partial derivatives equation keeps the same form. This can be considered as the invariability of a generalized Laplace equation. Moreover,four important properties of generalized Poisson kernel on a sphere of radius r were obtained. With all these characteristic properties,it was proved that a generalized Poisson integral formula in a sphere of radius r satisfies all requirements,which Dirichlet problems in a sphere of radius r provides.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.163.22