一种新的语言模型判别训练方法  被引量:2

One New Discriminative Training Method for Language Modeling

在线阅读下载全文

作  者:于浩[1] 高剑峰[2] 步丰林[1] 

机构地区:[1]上海交通大学电子与电气工程学院,上海200030 [2]微软亚洲研究院,北京100080

出  处:《计算机学报》2005年第10期1708-1715,共8页Chinese Journal of Computers

摘  要:已有的一些判别训练(discriminative training)方法如Boosting[1]为了提高算法的效率,要求损失函数(loss function)是可以求导的,这样的损失函数无法体现最直接的优化目标.而根据最直接优化目标定义的损失函数通常是不可导的阶梯函数的形式.为了解决上述问题,文章提出了一种新的判别训练的方法GAP(Greedy Approximation Processing).这种方法具有很强的通用性,只要满足阶梯函数形式的损失函数都可以通过此算法进行训练.由于阶梯形式的损失函数是不可导的,无法使用梯度下降的方式计算极值并获得特征权值.因此,GAP采用'贪心'算法的方式,顺序地从特征集合中选取特征,通过穷举搜索的方式确定其权值.为了提高GAP算法的速度,作者在GAP算法中引入了特征之间独立的假设,固定特征的更新顺序,提出了GAP的改进算法FGAP(Fast Greedy Approximation Processing).为了证明FGAP算法的有效性,该文将FGAP算法训练的模型应用到日文输入法中.实验结果表明通过FGAP算法训练的语言模型优于Boosting算法训练的模型,与基础模型相比相对错误率下降了15%~19%.Existing discriminative training methods such as boosting and perceptron in language modeling always use the loss function that can be optimized directly. But such loss functions do not represent the most direct optimal objective although they can simplify the training procedure. This paper proposes a new discriminative training algorithm, Greedy Approximation Processing (GAP). GAP does a little constrain with the loss function as long as it is one type of step function. Since minimizing such functions is NP hard and gradient of those can not be computed directly, GAP adopts a greedy approach. At each iteration, it selects the feature from the feature set that most contributes to the loss function reduction under the current model parameters and updates the feature weight by exhaustive search through the loss function. Searching this unsmoothed function is of course prohibitively expensive. Consequently, this paper proposes a faster algorithm, Fast Greedy Approximation Processing (FGAP). It is a variant of GAP that first orders all of the features based on each feature's gain, the difference in the value of the loss function before and after adding the feature. FGAP achieves a substantial improvement in training speed as well as almost the same performance as GAP. FGAP is applied to training language models by using the conversion errors from Japanese Kana to Kanji as the loss function. Performance of these models is compared on the task of Japanese Kana-Kanji conversion. Experimental results, show that FGAP achieves better results than that of boosting, and the results are substantially better than that of the traditional n-gram model.

关 键 词:语言模型 判别训练 损失函数 日文输入法 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象