检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学计算机学院
出 处:《宇航学报》2005年第5期640-643,675,共5页Journal of Astronautics
基 金:国防科技预研基金(413150801);综合业务网国家重点实验室开放基金ISN6-7资助
摘 要:由于难于获得先验知识,样本可分性差,辐射源识别很难达到很高的识别率。结合AdaBoost算法和遗传算法,提出了一种模糊分类规则的迭代学习方法。在每轮迭代训练过程中,算法通过调整训练样本的分布,利用遗传算法产生分类规则。减少分类规则能够正确分类样本的权值,使得新产生的分类规则重点考虑难于分类和拒识的样本。在规则学习的适应度函数中考虑训练实例的分布,使模糊分类规则在产生阶段就考虑相互之间的协作,改善了模糊分类规则的整体识别能力。辐射源识别实验结果表明,该方法具有良好的分类识别性能。Because available knowledge is hard to obtain and the separability of instances is bad, the classification of Radiant Point has a low recognition rate. An iterative learning method of fuzzy classification rides is presented based on the combination of AdaBoost algorithm and Genetic algorithm. At each iteration training of AdaBoost algorithm, the distribution of training instances are adjusted on which classification rtdes are created by Genetic algorithm. The weights of the training instances that are classified correctly by available rules are reduced, so that the new fuzzy ride focuses on the misestimate or uncovered instances. Because the distribution of training instances are attached to computing of the fimess function and the collaboration of rtdes is taken into account during producing rtdes. The classification performance of the multiple classifiers ensemble based on the fuzzy rules is improved. In Radiant Point experiments, this algorithm shows good recognition rate.
关 键 词:模糊分类规则 ADABOOST算法 遗传算法 集成
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222