检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邹丹平[1] 冯涛[2] 李咸伟[3] 刘其真[1]
机构地区:[1]复旦大学计算机科学与工程系,上海200433 [2]上海第二工业大学,上海200041 [3]宝钢技术中心,上海201900
出 处:《中国图象图形学报》2005年第11期1458-1461,共4页Journal of Image and Graphics
摘 要:由于直方图一般是图像灰度或者其他分量的统计信息,因此分析图像的直方图是图像处理中的一个实用方法。直方图逼近是直方图分析方法之一,一般利用若干高斯分布函数来对直方图进行逼近。如何得到各个高斯分布函数的参数是问题的难点,解决此问题的一条途径把直方图逼近问题转化为统计学中的混合模型参数估计问题。文章首先采用EM(数学期望最大化)方法解决了这个问题,然后介绍了基于EM的直方图逼近方法在最优阈值化、直方图成份分析方面的应用。Histogram is commonly the statistical information about gray level or other chromatic components of image. Analyzing the histogram of image is a useful method in image processing. Adopting several probability density functions (PDFs) with Gaussian distribution to approximate the histogram is one way for histogram analyzing. But how to acquire the parameters of these distributions remains a hard issue. This paper uses expectation maximization algorithm to estimate the parameters by converting histogram apporximation problem into Guassian mixture models problem in statistics, and then introduces its application in optimal thresholding and histogram component analysis.
关 键 词:直方图逼近 混合模型 数学期望最大化 最优阈值化
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.202.40