基于模糊竞争学习和UD分解的模糊建模  

Fuzzy modeling based on fuzzy competitive learning and matrix UD decomposition

在线阅读下载全文

作  者:王宏伟[1] 顾宏[1] 刘晓东[1] 

机构地区:[1]大连理工大学电子与信息工程学院自动化系,辽宁大连116024

出  处:《大连理工大学学报》2005年第6期888-891,共4页Journal of Dalian University of Technology

基  金:国家自然科学基金资助项目(60575039);国家"863"重点基础研究计划资助项目(2002AA414010)

摘  要:为解决复杂系统模糊建模问题,研究了利用模糊竞争学习实现非线性系统的模糊建模方法.首先,利用模糊竞争学习方法划分输入变量的模糊输入空间,确定模糊模型的规则数、规则,实现模糊模型的结构优化.另外,为了克服递推最小二乘出现的误差积累、传递现象,采用基于矩阵UD分解的递推最小二乘方法确定模糊模型的结论参数,从而实现模糊模型的结构和参数优化.采用该方法对M ackey-G lass混沌时间序列进行建模研究,结果表明可以在线或者离线对M ackey-G lass混沌时间序列进行准确预测,效果较好.For the fuzzy modeling problem of complex system, the fuzzy modeling of nonlinear systems based on fuzzy competitive learning is proposed. First of all, the fuzzy competitive learning is utilized to partition the input space of input variables, and to confirm the number of rules and rules, and then optimize the structure of fuzzy model. In addition, the recursive least square based on matrix UD decomposition is used to confirm the conclusion parameters of fuzzy model for the sake of accumulating and transferring of the errors of recursive least square. The structure and parameters of fuzzy model are optimized on the basis of the presented algorithm. To illustrate the performance of the proposed method, simulations on the chaotic Mackey-Glass time series prediction are performed. Combining either off-line or on-line learning with the proposed method, the chaotic Mackey-Glass time series are accurately predicted, and the good effectiveness is demonstrated.

关 键 词:模糊竞争学习 Mackey-Glass混沌时间序列 矩阵UD分解 递推最小二乘 混沌系统 

分 类 号:TP15[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象