检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学应用数学系
出 处:《大连理工大学学报》2005年第6期920-924,共5页Journal of Dalian University of Technology
基 金:国家自然科学基金资助项目(10471015).~~
摘 要:为了寻找带有等式约束和不等式约束的非线性规划问题的Kuhn-Tucker点,给出了一种微分方程系统.在一定的条件下,证明了非线性规划问题的Kuhn-Tucker点是微分方程系统的渐进稳定平衡点,并且基于一般微分方程系统的数值积分建立了一个数值算法,然后给出了该数值算法的收敛性定理.数值算例表明了该算法的有效性.A system of differential equations is constructed to find Kuhn-Tucker points of a nonlinear programming problem with both equality and inequality constraints. It is proved that the Kuhn-Tucker point of the nonlinear programming problem is an asymptotically stable equilibrium point of the differential system and a numerical algorithm is given based on the numerical integration of the proposed system of ordinary differential equations. The convergence theorem of the numerical algorithm is demonstrated. Several illustrative examples show the effectiveness of the algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229