检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京工业大学应用物理系 [2]新疆师范大学数学系
出 处:《北京工业大学学报》1996年第2期1-9,共9页Journal of Beijing University of Technology
基 金:国家自然科学基金
摘 要:基于高阶微商奇异拉氏量系统的相空间泛函积分,导出了该系统在相空间中整体变换下的广义正则Ward恒等式,得到了系统在相空间中整体对称下的量子守恒荷,该守恒荷一般有别于经典Noether荷。用于高阶徽商Yang-Mills理论,导出了相应的广义BRS荷。这里给出的形式的突出优点在于勿需作出Green函数的相空间生成泛函中对正则动量的泛函积分,即可导出相应的结果。一般情形是不能作出该积分的。In this paper,on the basis of the phase-space functional integral for a system with a singular higher-order lagrangian, the canonical Ward identities for such a system under the global transformation in extended phase space have been derived; the quantal conserved charge under the global symmetry transformation in extended phase space is obtained. In view of this conserved charge in general is different from Noether charge in classical theory.A preliminary application of this formulation to Yang-Mills theory with higher-order derivatives is presented;the generalized BRS Charge is deduced.It is shown that the advantage of this formulation is that one does not need to carry out the integration over canonical momenta in phase-space functional integral, which could not be done by usual practice.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7