检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学
出 处:《通信学报》1996年第2期86-93,共8页Journal on Communications
基 金:电子工业部电科院预研基金
摘 要:本文研究了径向基函数网络(RBFN)的分类机理问题。在Ruck工作的基础上,通过与传统的基于Parzen窗估计核分类器做类比,本文从模式分类机理入手,分析了RBFN使用正、负两类训练样本来估计判别函数的特点,指出它优于核分类器,并讨论了相应情况下RBFN输出层连接权、模式分类判决域的特点。最后用多类模式分类的结果对上述理论进行了验证。The classification mechanism of a radial basis function network(RBFN)is investigated in this paper. From Ruck's conclusion,for pattern classification based on the method of Parzen window estimation,it is shown in this paper that the RBFN has better performance than the conventional kernel classifier by using two kind of,that is,positive and negative training samples.The role of the weights of a RBFN in the estimation of decision function is described heuristically for multiclass problem.An example of classification experiment is presented to illustrate the analysis in the paper.
分 类 号:O211.3[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15