检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《厦门大学学报(自然科学版)》2006年第1期23-25,共3页Journal of Xiamen University:Natural Science
基 金:国家自然科学基金(10471115)资助
摘 要:在新近发展起来的随机共轭空间理论基础上,利用完备随机内积模上的Riesz表示定理,证明了如下结论:设(S,χ)是任一完备随机内积模,T:S→S是S上任一模同态.若XTp,q=Xp,Tq,p,q∈S,那么T是几乎处处有界的.The notion of a complete random inner product module is a random generalization of that of a Hilbert space. The Hellinger-Toeplistz theorem in Hilbert spaces is a basic and useful tool for linear operators. In this paper, the basic theorem was generalized onto complete random inner product modules.and the following conclusion was achieved, i. e.. Let (S, χ) be a complete random inner product module and T: S→ S a module homomorphism such that XTp,q = Xp,Tq, arbitrariness p, q∈S. Then T was almost everywhere bounded. It should be pointed out that the present work is based on the newly-developed theory of random conjugate spaces.in particular on the Riesz representation theorem on complete random inner product modules.
关 键 词:随机内积模 几乎处处有界的线性算子 对称的模同态
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.45.170