完备随机内积模中的Friedrichs定理  

Friedrichs Theorem in Complete Random Inner Product Modules

在线阅读下载全文

作  者:郭铁信[1] 倪丹[1] 

机构地区:[1]厦门大学数学科学学院,福建厦门361005

出  处:《厦门大学学报(自然科学版)》2006年第1期26-28,共3页Journal of Xiamen University:Natural Science

基  金:国家自然科学基金(10471115)资助

摘  要:完备随机内积模是Hilbert空间的随机推广.最近,经典的Riesz表示定理已经被推广到完备随机内积模上,在此基础上本文将Hilbert空间上经典的Friedrichs定理推广到完备随机内积模上.首先,证明完备随机内积模上任一正Her-mite型惟一地对应一个正自共轭算子.值得指出的是:完备随机内积模上Friedrichs定理的证明中所涉及的一系列基本概念与方法都是以随机共轭空间理论为出发点的,与经典情形完全不同.The notion of a complete random inner product module is a random generalization of that of a Hilbert space. Recently, the classical Riesz representation theorem on Hilbert spaces has been generalized onto complete random inner product modules, in this paper the classical Friedrichs theorem on Hilbert spaces is generalized onto complete random inner product modules. First,it is proved that a positive Hermite form corresponds uniquely to a positive self-adjoint operator in a complete random inner product module, then this result leads directly to the proof of the main result of this paper. It should be pointed out that the main result of this paper and its proof were completely based on the viewpoint of the theory of random conjugate spaces, and thus the work of this paper had a new starting point which was completely different from that of the corresponding classical case.

关 键 词:完备的随机内积模 HERMITE型 下半有界的对称算子 自伴算子 

分 类 号:O177.39[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象