检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学讯飞语音实验室,合肥230027
出 处:《计算机工程与应用》2006年第2期167-170,共4页Computer Engineering and Applications
基 金:国家自然科学基金资助项目(编号:60475015)
摘 要:字音转换问题一直是中文语音合成系统中不可缺少的模块,而多音字消歧是字音转换的核心问题。多音字的词性对于读音消歧有着特殊重要的意义。该文利用词性到读音映射关系将多音字划分为a类和b类。针对不同类别,我们提出一种多层面多音字消歧方案,分别从词性和语义层面上进行消歧,使用决策树模型和手工规则体系对多音字进行处理,实验结果表明,从词性层面上消歧利用决策树模型更好,而手工规则体系在语义层面上消歧更加有效。对每类分别从相应层面进行多音字消歧,正确率从baseline的80.74%达到了96.58%。In Text-to-Speech (T/S) systems,Grapheme-Phoneme (G2P) conversion is one of the most important modules,and polyphone disambiguation is its key problem.The Part of Speech (POS) of polyphones is very important for pronunciation disambiguation.In this paper,polyphones are divided into two categories according different from mapping from POS of polyphone to pronunciation.A multi-level solution of polyphone disambiguation is proposed for different category of polyphone and the disambiguation is processed on POS level and semantic level separately,on which decision tree model and rule-based system can be applied.The experiment results show that for POS level disambiguation decision tree get better performance while rule-based is more effective for semantic level disambiguation.Polyphones of each class were disambiguated on corresponding level,and the correct rate increased from 80.74% of baseline to 96.58%.
分 类 号:TP391.42[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.157