检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华南理工大学生物医学工程系,广东广州510640
出 处:《中国医学物理学杂志》2006年第1期25-27,24,共4页Chinese Journal of Medical Physics
基 金:广东省自然基金项目(04020048)
摘 要:本文提出一种基于塔分割和多中心模糊C均值算法结合的无监督MR图像分割方法。文中采用根标记方法对塔图像进行过分割;在塔的最底层模糊图像上应用HSC(hierarchical subtractive clustering)计算初始的聚类中心及聚类数,进而应用FCM算法合并过分割的结果。由于塔分割有效地降低了聚类样本数和HSC自动获得有效的初始聚类中心和聚类数,实验结果表明,在聚类性能不变情况下显著地减少FCM算法的运算时间,从而实现医学图像的快速分割。A new unsupervised image segmentation technique is presented in this paper, which combines pyramid image segmentation with the modified fuzzy c-means (FCM) clustering algorithm. Each layer of the pyramid is split into a number of regions by a root labeling technique. And fuzzy c-means is then applied to merge the regions of the layer with the highest image resolution into the number of fuzzy objects. The initial cluster centers and the number of clusters for FCM are generated by using the two-level hierarchical subtractive clustering (HSC) algorithm automatically. As pyramid segmentation can reduce the number of patterns being clustered drastically by generating a region vector instead of using each image pixel, results of experiments on actual magnetic resonance (MR) image show that the computational overhead of FCM is reduced effectively, while the segmentation results are almost the same.
分 类 号:R318[医药卫生—生物医学工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.173