检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《数学年刊(A辑)》2006年第1期109-118,共10页Chinese Annals of Mathematics
基 金:国家自然科学基金(No.10471039)浙江省自然科学基金(No.M103104)湖州市自然科学基金(No.2005YZ02)资助的项目.
摘 要:本文讨论了Bergman空间和q-Bloch空间(小q-Bloch空间)之间的复合算子Cφ的有界性和紧性特征,得到了以下结论:(1)Cφ是q-Bloch空间(小q-Bloch空间)到Bergman空间的有界算子或紧算子之充要条件; (2)Cφ是Bergman空间到q-Bloch空间的有界算子或紧算子之充要条件; (3)Cφ是Bergman空间到小q-Bloch空间的有界算子或紧算子之充要条件,还给出了算子 Cφ0的范数估计,此处Cφ0(f)(z)=foφ(z)-f(φ(0)).This paper discusses the boundedness and compactness of composition operators Cφ between Bergman spaces and q-Bloch spaces as well as little q-Bloch spaces. It is obtained as follows: (1) the sufficient and necessary condition for Cφ0 to be bounded or compacted operators from B^q (or B0^q) to AP; (2) the sufficient and necessary condition for Cφ to be bounded or compacted operators from Ap to B^q; (3) the sufficient and necessary condition for Cφ to be bounded or compacted operators from Aα^p to B0^q. At the same time, the authors give some estimations for norm of the operator Cφ^0, where Cφ^0(f)(z) = f o φ(z) - f(φ(0)).
关 键 词:BERGMAN空间 q-Bloch空间 小q-Bloch空间 复合算子 范数
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28