高频金融数据的长记忆SV模型分析——基于FFF回归  

High-frequency Financial Data's Long Memory SV Model Analysis Based on FFF Regression

在线阅读下载全文

作  者:韩伟[1] 李钢[1] 

机构地区:[1]天津大学管理学院,天津300072

出  处:《西北农林科技大学学报(社会科学版)》2006年第2期44-47,共4页Journal of Northwest A&F University(Social Science Edition)

摘  要:高频金融数据的分析与建模是金融计量学的一个全新的研究领域。与低频数据不同,高频数据通常具有“日历效应”和波动长记忆性。本文在使用弹性傅立叶形式(FFF)回归技术消除“日历效应”的基础上,针对高频数据的波动长记忆性建立了长记忆SV模型,结果发现高频数据的波动持续性大大降低。High-frequency financial data analysis and modeling is a new research field in financial econometrics. Unlike low frequency data, high frequency data has the calendar effects and long memory volatility. The paper uses Flexible Fourier Form Regression to fit the calendar effects, and constructs long memory SV model for Shanghai Stock Index. Through this research,it can be discovered that the volatility persistence of high frequency data is very low.

关 键 词:高频金融数据 弹性傅立叶形式(FFF)回归 日历效应 波动持续性 长记忆SV模型 

分 类 号:F830[经济管理—金融学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象