检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机辅助设计与图形学学报》2006年第2期251-256,共6页Journal of Computer-Aided Design & Computer Graphics
基 金:国家自然科学基金(90207002)
摘 要:传统的状态覆盖方法对电路的数据单元测试不足,而随机测试方法又具有盲目性·在综合2种方法的基础上,给出一种以状态与状态转换覆盖率为评估、以遗传筛选为工具对生成的测试向量进行择优选择的方法·为了指导测试生成,给出了动态状态转换与静态状态转换概念·同时,基于该方法给出一个测试生成工具GRTT·最后,将文中方法实验于ITC99-benchmark电路,并将实验结果与测试生成系统X-Pulling的结果进行比较·The merit and shortcoming of traditional states covering method and genetic method are analyzed in this article. A new genetic selecting approach is presented to overcome the shortcoming of these two methods. First, it can be implemented at RT-level. Second, it uses state coverage as fitness function, which is useful to test the control-part of the circuit. Third, it can test the control part and data part of circuit at the same time. The concept about dynamic state transfer and static state transfer are also brought up in this paper to direct test pattern generation. Based on this approach, an ATPG toot named GRTT is developed. Experimental results on ITC99-benchmarks show that GRTT can get excellent results not only in coverage but also in run-time. In comparison with X-Pulling, an experimental RT-level ATPG system, GRTT runs faster.
关 键 词:静态状态转换 动态状态转换 遗传算法 测试向量生成
分 类 号:TP391.76[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.124.186