检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《高等学校计算数学学报》1996年第1期7-16,共10页Numerical Mathematics A Journal of Chinese Universities
基 金:国家自然科学基金
摘 要:0 引 言 随着计算机的发展,人们有信心去解决过去几乎无法解决的计算难题,特别是关于非线性发展方程在大时间范围内的数值积分。这是因为某些物理参数充分大时,方程的解在时间t→∞时可能不趋向于定常解,而是趋向于一个复杂集合;吸引子,这种现象引诱着人们去探讨时间趋向于无穷时解的渐近行为。 非线性Galerkin算法是按照动力系统的观点而开发的一种新的积分算法。它们基于流动的大涡分量和小涡分量相互关系的近似处理。因而特别适合于大时间区间的数值积分。 由于数值求解方程时,计算机对于已知数据只能取有限小数去近似,由此导致了数值解的误差。随着计算时间步数的增加,这种误差会发展。In this paper, we provide the Galerkin algorithms and nonlinear Galerkin algorithms for solving the nonlinear evolution equations where the spatial discretization can be performed by the Galerkin spectral elements and the nonlinear Galerkin spectral elements respectively; time discretization can be performed by the Euler explicit and implicit difference schemes. According to the stability analysis of these numerical schemes, the stability of the nonlinear Galerkin algorithms is superior to ones of the Galerkin algorithm in the case of explicit scheme; the stabilities of two algorithms are same in the case of implicit scheme.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49