检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学计算机与信息学院,合肥230009
出 处:《计算机工程与应用》2006年第6期52-54,共3页Computer Engineering and Applications
基 金:安徽省自然科学基金资助项目(编号:03042305)
摘 要:传统的强化学习算法只能解决离散状态空间和动作空间的学习问题。论文提出一种模糊强化学习算法,通过模糊推理系统将连续的状态空间映射到连续的动作空间,然后通过学习得到一个完整的规则库。这个规则库为Agent的行为选择提供了先验知识,通过这个规则库可以实现动态规划。作者在RoboCup环境中验证了这个算法,实现了踢球策略的优化。Conventional reinforcement algorithms only deal with discrete state spaces and discrete action spaces.In this paper,we propose a fuzzy reinforcement algorithm,which map continuous state spaces to continuous action spaces by fuzzy inference system and then learn a rule base.The rule base provides prior knowledge for agent's action selection and dynamic programming.We confirm the algorithm in RoboCup environment and implement the optimization of kick skill.
关 键 词:强化学习 模糊推理系统 模糊Q学习 ROBOCUP 踢球技术
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195