检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学计算机科学与技术学院 [2]温州大学信息科学与工程学院,浙江温州325035
出 处:《计算机应用》2006年第4期784-786,共3页journal of Computer Applications
摘 要:模糊C均值聚类(FCM)算法是一种经典的模糊聚类分析方法,但其算法初始聚类中心集是随机选取的,从而造成算法的性能强烈的依赖聚类中心集的初始化。提出了一种改进的基于多项式求解的FCM(PFCM)算法,该算法基于求解多项式的根来确定数据集初始聚类中心集,很好地解决了数据初始聚类中心集问题,使数据初始聚类中心集代表了数据集类别的特征,在此基础上,采用FCM算法得到聚类中心集的近似最优解。Fuzzy C-Means (FCM) algorithm is one of the most popular methods of clustering analysis. However, the traditional FCM algorithm does not work well because its initial clustering central collection is the stochastic selection. An efficient PFCM algorithm was proposed. Based on the solving multinomial root, the PFCM algorithm solved question of initial clustering central collection of data set. The experiment result demonstrates its effectiveness.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200