检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]空军雷达学院信息与指挥自动化系,武汉430019
出 处:《数据采集与处理》2006年第1期29-33,共5页Journal of Data Acquisition and Processing
基 金:国防预研基金(51421040103JB4902)资助项目
摘 要:将无味卡尔曼滤波(U nscen ted K a lm an filter,UKF)应用于雷达配准,提出一种新的多雷达方位配准算法。在该算法中,目标的运动状态和方位误差由选定的采样点来近似,在每个更新过程中,采样点随着状态方程传播并随非线性测量方程变换,得到目标的运动状态和方位误差的均值,避免了对非线性方程的线性化,且具有较高的计算精度。与传统的扩展卡尔曼滤波(Ex tended K a lm an filter,EKF)方法进行了仿真比较,结果表明UKF方法能有效地克服非线性跟踪问题中很容易出现的滤波发散问题,且估计精度高于UKF方法。The unscented Kalman filter (UKF) is applied to the radar registration and a new algorithm for the multi-radar azimuth registration is presented. In the algorithm, the target state and the biased error estimates are approximated by specified sample points. During the each update process, sample points are propagated by the state equation and transformed by the nonlinear measurement equation. From these sample points, the posterior mean and covariance of the target state, and the biased error are accurately computed to the second order. The lin earization of the nonlinear equations for the extended Kalman filter(EKF)is not needed. Simulation result shows that in the radar standard EKF in the accuracy and the registration problem the UKF divergence performance. method outperforms the
分 类 号:TN911.7[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229