检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连理工大学土木水利学院,辽宁大连116023
出 处:《长江科学院院报》2006年第2期42-45,共4页Journal of Changjiang River Scientific Research Institute
摘 要:针对BP神经网络收敛速度慢、易陷入局部极小的缺点,将具有全局搜索能力的模拟退火(SA)算法引入到神经网络的权值优化中。并且在SA算法中引入状态接受过程和退火过程的自适应措施,增加了对当前状态最优解的“记忆能力”,避免了当前最优解的遗失,提高了算法的搜索效率。通过对XOR问题求解的比较,显示出SABP算法具有全局收敛且精度高的优越特性。最后基于实际工程的边坡数据建立了一个SABP算法模型,成功解决了具有高度非线性特点的边坡稳定性评价问题。Since BP neural network possesses disadvantages of slow convergence and local minimum, a global optimum algorithm- simulated annealing (SA) for modifying the weight values is proposed instead of local gradient descend. The adaptive steps of state accepting and temperature-lowering processses are applied to avoiding the losing of current optimization solution and to enhancing search efficiency. By the Comparison in solving XOR problem, the predominant capability of SABP algorithm is pre^nted on global optimization and convergence precision. Finally, a SABP model of slope stability evaluation is built based on practical engineering data, and it has successfully solved the slope stability evaluation problem that has the highly nonlinear character.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.65