检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王炜[1] 林命週[1] 马钦忠[1] 赵利飞[1]
机构地区:[1]上海市地震局,上海200062
出 处:《西北地震学报》2006年第1期78-84,共7页Northwestern Seismological Journal
基 金:地震科学联合基金(104090)
摘 要:统计学习理论(SLT)是研究小样本情况下机器学习规律的理论。支持向量机(SVM)基于统计学习理论,可以处理高度非线性分类和回归等问题,不但较好地解决了小样本、过学习、高维数、局部最小等实际难题,而且具有很强的泛化(预测)能力。本文介绍了支持向量机的分类、回归方法,分析了这一方法的特点,讨论了该方法在地震预报中的应用前景。Statistical learning theory (SLT) is a small-sample statistics theory. Support vector machine (SVM) is a new machine learning method based on statistical learning theory. It can process the high nonlinear problems with classification and regression, SVM not only can solve some problems, such as small-sampler over-fitting, high-dimension and local minimum, but also has higher generalization (forecasting) ability than that of the artificial neural networks. In this paper, the classification and regression methods of SVM are introduced , the characters of the methods are analyzed , and the application future of SVM in earthquake prediction is discussed also.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145