检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]电子科技大学通信与信息工程学院,四川成都610054
出 处:《光电工程》2006年第3期50-53,共4页Opto-Electronic Engineering
摘 要:通过分析三种主要变分去噪模型(调和、全变分以及广义全变分模型)的优缺点,提出了一种基于全变分的自适应图像去噪模型。该模型根据噪声图像的信噪比,采用高斯滤波器对图像进行预处理,克服了全变分模型引入的阶梯效应;利用图像中每一像素点的梯度信息,自适应选取去噪模型中决定扩散强弱的参数p(x,y),使接近边缘处平滑较弱,远离边缘处平滑较强。数值实验表明,本方法在去除噪声的同时保留了图像的细节信息,取得了很好的降噪性能,其峰值信噪比(PSNR)在高噪声水平下,较其他变分方法至少提高1.0dB左右。An adaptive image denoising model based on Total Variation (TV) is proposed by analyzing the three important denoising models: harmonical model, TV model and generalized TV model, in the variational image restoration. Firstly, the convolution of the Gaussian filter and the noisy image can remove a small portion of the noise so it is less likely to be detected as an edge, and then we can adaptively select the most appropriate denoising scheme based on the gradient information of each pixel. Numerical experiments show that the proposed method can remove the noise while preserving significant image details. At high noise level, the method achieves at least 1.0dB gain over other variational denoising methods for Peak Signal-Noise Ratio (PSNR) measurement.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3