基于模糊预测系统的观测数据野值剔除方法  被引量:9

New method for outlier removal from observed data based on fuzzy forecasting system

在线阅读下载全文

作  者:朱学锋[1] 韩荣阁[1] 杨若红[1] 

机构地区:[1]中国人民解放军92941部队96分队

出  处:《系统工程与电子技术》2006年第3期478-482,共5页Systems Engineering and Electronics

摘  要:针对观测数据序列中影响数据处理和分析的野值,提出了一种在线辨识和剔除野值的方法。该方法利用梯度下降法构造最小均方准则下最优的观测序列模糊预测系统,从而获得预测值与观测值的残差序列,然后基于狄克松准则快速辨识并剔除观测数据中的异常值。对实测数据的仿真实验表明:该方法能够准确跟踪观测信号的变化,适合于各种观测信号单个性野值的辨识和剔除。To determine the outliers having an influence on data processing and analysis in observed data, a new on-line method for identifing and eliminating outliers based on fuzzy forecasting system of time series. Firstly, the optimal fuzzy forecasting system is designed according to the least mean square criterion by gradient descent algorithm, and residual error sequence between observed data and predicted data is obtained. Then outliers are identified and discarded according to exceptional value in residual error sequence based on Dickson criterion. Effectiveness of the new method is proved through experiments with real observed data. The on-line fuzzy forecasting system of time series can exactly track the signals, suitable to identify and discard outliers in various of signals with right initialization.

关 键 词:野值 辨识 预测 模糊系统 

分 类 号:TP277[自动化与计算机技术—检测技术与自动化装置] P315.7[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象