检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]广西师范大学计算机系,桂林541004 [2]北京科技大学信息工程学院,北京100083
出 处:《计算机科学》2006年第4期155-158,共4页Computer Science
摘 要:目前,基于二进制差别矩阵的属性约简算法有如下不足:算法的时间和空间复杂度不理想;所得到的属性约简与由基于正区域的属性约简的定义得到的属性约简不一致。本文给出一个简化的二进制差别矩阵和相应的属性约简的定义,证明了该定义与基于正区域的属性约简的定义是一致的。由于在简化的二进制的差别矩阵中,要先求出IND(C),故设计了一个较好的求IND(C)的算法,其复杂度被降低为O(|U‖U|)。在此基础上设计了一个快速属性约简算法,其时间复杂度和空间复杂度分别被降为max{O(|C|^2(|U'pos‖U/C|)),O(|C‖U|)}和max{O|U|},O(|C|(|U'pos‖U/C|))}。At present, the attribution reduction algorithm based on binary discernibility matrix has the following short comings, it's time complexity and space complexity are not good; the attribution reduction acquired from this algorithm is not the one acquired from definition of attribution reduction based on positive region. In this paper, a simple binary discernibility matrix and the corresponding definition of attribution reduction are provided. At the same time, it is proved that the above definition of attribution reduction is the same as the definition of attribution reduction based on positive region. For first computing IND(C) in the simple binary discemihility matrix, a good algorithm for computing IND(C) is designed, it's time complexity is cut down to O(|C ‖ U| ). On this condition, a quick attribution reduction algorithm is designed, time complexity and space complexity of the new algorithm are cut down to max{O(|C|^2(|U'pos‖U/C|)),O(|C‖U|)}and max{O|U|},O(|C|(|U'pos‖U/C|))} respectively.
关 键 词:粗糙集 二进制差别矩阵 简化的二进制差别矩阵 核 复杂度
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.247.50