检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安建筑科技大学土木工程学院
出 处:《振动与冲击》2006年第2期83-87,共5页Journal of Vibration and Shock
摘 要:利用神经网络技术,提出了识别结构物理参数的一种方法。用单元刚度矩阵基本值和模态应变能来选择基本模态,用修正的Latin超立方采样技术和模态准入准则来产生网络的输入数据。贮仓在动载作用下的自振频率和模态作为网络的输入,子矩阵参与系数作为网络的输出,用Levenberg-Marquardt算法训练网络。仿真计算表明,方法是可行的。A method to identify the physical parameters of structure system has been developed by using neural network . Element-stiffness matrix baseline parameters and modal strain energy are employed for the selection of the base modes. An updated-Latin hypercube sampling and modal assurance criteria are adopted for efficient generation of the patterns for training the neural network. The neural network is composed in which the input signals are the silo natural frequencies and its mode shapes ,and output signals are the submatrix scaling factor . The Levenberg-Marquardt algorithm is applied to modify the weight matrices of neural network. Results from computer simulation studies show that the method is valid and feasible.
关 键 词:参数识别 神经网络 修正的Latin超立方采样技术 模态应变能
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222