检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算力学学报》2006年第2期157-162,共6页Chinese Journal of Computational Mechanics
基 金:国家自然科学基金重点基金(60134010)资助项目
摘 要:给出了求解一维双曲型守恒律的一种半离散三阶中心迎风格式,并利用逐维进行计算的方法将格式推广到二维守恒律。构造格式时利用了波传播的单侧局部速度,三阶重构方法的引入保证了格式的精度。时间方向的离散采用三阶TVD R unge-K u tta方法。本文格式保持了中心差分格式简单的优点,即不需用R iem ann解算器,避免了进行特征分解过程。用该格式对一维和二维守恒律进行了大量的数值试验,结果表明本文格式是高精度、高分辨率的。A third-order semi-discrete central-upwind scheme for one-dimensional system of conservation laws was presented. The scheme is extended to two-dimensional hyperbolic conservation law by the dimension-by-dimension approach. The presented scheme is based on the one-sided local speed of wave propagation. In order to guarantee the accuracy of spatial discretizaiton, a third-order reconstruction is introduced in this paper. The time integration is implemented by using the third-order TVD Runge- Kutta method. The resulting scheme retains the main advantage of the central-schemes simplicity, namely no Riemann solvers are involved and hence characteristic decompositions can be avoided. A variety of numerical experiments in both one and two dimensions are computed. The results show the high accuracy and high resolution of the scheme.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3