检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:佟瑞洲[1]
出 处:《辽宁大学学报(自然科学版)》2006年第2期163-165,共3页Journal of Liaoning University:Natural Sciences Edition
基 金:辽宁省教育厅科研项目(20401232)
摘 要:证明了丢番图方程|-x4+6x2y2+3y4|=2z2,(x,y)=1的全部正整数解为:(Ⅰ)若z>2y2,则x=|m21n21-6m22n22|,y=m21m22+2n21n22,z=z=[24m21m22n21n22-2(|m21m22-2n21n22|±2m1m2n1n2)2],其中m2,n1满足-n41+6m22n21+3m42=2(D2)2,2n1m1m2;z=z-时,n2,m1满足(D-4m2m1)n2=m1(m22-n21)和(D+4m2n1)m1=2n2(n21+3m22),z=z+时,n2,m1满足n2(D±4m2n1)=(m22-n21)m1和m1(D4m2n1)=2n2(3m22+n21).(Ⅱ)若z<2y2,则x=|m21n21-6m22n22|,y=m21m22+2n21n22,z=±z0,z0=24m21m22n21n22-2(|m21m22-2n21n22|±2m1m2n1n2)2,其中m2,n1满足-n41+6m22n21+3m42=2(D2)2,2n1m1m2;z=z0时,n2,m1满足n2(D±4m2m1)=(m22-n21)m1和m1(D4m2n1)=2n2(3m22+n21),z=-z0时,n2,m1满足(D4m2n1)n2=m1(m22-n21)和(D±4m2n1)m1=2n2(n21+3m22).从而更正了梁莉莉,王云葵[1]关于上述方程仅有正整数解(x,y,z)=(1,1,2)的结果.We have proved that all positive integer solutions to the Diophantine equation |6x^2y^2 - X^4 + 3y^4 |= 2z^2(x,y)=1 which are(Ⅰ)If z〉2y^2 then X=|m1^2n1^2-6m2^2n2^2|,Y=m1^2m2^2+2n^2n2^2,z=z-+=-+[24m1^2m2^2n1^2n2^2-2(|m1^2m2^2-2n1^2n2^2|±2m1m2n1n2)^2]where m2, n1 satisfies-n1^4+6m2^2n1^2+3m2^4=2(D/2)^2,2χn1m1m2 when z=z-,n2m1 satisfies (D-4m2m1)m2=m1(m2^2-n1^2) and (D+4m2n1)m1=2n2(m1^2+3m2^2)when z=z+,n2,m1 satisfies n2 (D±4m2n1)=(m2^2-n1^2)m1和m1(D-+4m2n1)=2n2(3m2^2+n1^2)(Ⅱ)If;z〈2y^2,then x=|m1^2n1^2-6m2^2n2^2|,y=m1^2m2^2+2n1^2n2^2,z=±z0,z0=24m1^2m2^2n1^2n2^2-2(|m1^2m2^2-2n1^2n2^2|±2m1m2n1n2)^2 where m2,n1 satisfies-n1^4+6m2^2n1^2+3m2^4=2(D/2)^2,2χn1m1m2 when z=z0,n2 m1 satisfiesn2(D±4m2m1)=(m2^2-n1^2)m1 and m1(D-+4m2n1)=2n2(3m2^2+n1^2),when z=-z0 ,n2 m1 satisfies (D-+4m2n1)n2=m1(m2^2-n1^2)and(D±4m2n1)m1=2n2(n1^2+3m2^2)The result that the Diophantine equation above has only positive integer solution (x, y, z) = (1,1,2) acquired by Liang Lili and Wang Yunkui is corrected.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7