检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yun-Fei Wang Huan Chen Yan-Hong Zhou
出 处:《Genomics, Proteomics & Bioinformatics》2005年第4期242-246,共5页基因组蛋白质组与生物信息学报(英文版)
基 金:supported by the National Natural Science Foundation of China(No.90203011 and 30370354);the Ministry of Education of China(No.505010 and CG2003-GA002).
摘 要:A computational system for the prediction and classification of human G-protein coupled receptors (GPCRs) has been developed based on the support vector machine (SVM) method and protein sequence information. The feature vectors used to develop the SVM prediction models consist of statistically significant features selected from single amino acid, dipeptide, and tripeptide compositions of protein sequences. Furthermore, the length distribution difference between GPCRs and non-GPCRs has also been exploited to improve the prediction performance. The testing results with annotated human protein sequences demonstrate that this system can get good performance for both prediction and classification of human GPCRs.A computational system for the prediction and classification of human G-protein coupled receptors (GPCRs) has been developed based on the support vector machine (SVM) method and protein sequence information. The feature vectors used to develop the SVM prediction models consist of statistically significant features selected from single amino acid, dipeptide, and tripeptide compositions of protein sequences. Furthermore, the length distribution difference between GPCRs and non-GPCRs has also been exploited to improve the prediction performance. The testing results with annotated human protein sequences demonstrate that this system can get good performance for both prediction and classification of human GPCRs.
关 键 词:GPCR PREDICTION CLASSIFICATION SVM
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33