检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王家忠[1] 王龙山[1] 周桂红[1] 李国发[1]
机构地区:[1]吉林大学
出 处:《中国机械工程》2006年第12期1223-1227,共5页China Mechanical Engineering
基 金:吉林省科技发展计划资助项目(20020632)
摘 要:建立了外圆纵向磨削表面粗糙度的模糊基函数网络(FBFN)预测模型,网络的训练采用自适应最小二乘算法(ALS)。ALS将最小二乘算法和遗传算法相结合,能够自主学习,不用人为干预,FBFN和粗糙度的分析模型相结合,只需少量实验数据便可完成网络的训练,自动产生模糊规则,确定隐含层的节点数。仿真和实验结果表明,FBFN网络结构非常适合粗糙度的预测和控制,采用ALS学习方法比BP算法、传统的遗传算法和正交二乘法等能产生更好的结果。A framework for modeling cylindrical traverse grinding surface roughness using fuzzy basis function neural networks(FBFN) was constructed with adaptive least-square(ALS) training algorithm. The ALS algorithm, based on the least- square method and genetic algorithm(GA), was proposed for autonomous learning and the construction of FBFN without any human intervention. Combining the FBFN with the surface roughness analytical model, the proposed algorithm would add a significant fuzzy basis function node at each iteration during the training process based on error reduction measure. Simulation and experimental studies were performed to demonstrate advantages of the proposed modeling framework with the training algorithm in modeling grinding processes. The resuits indicate that tailors the FNFB to predict and control the surface roughness and the new algorithms generate superior results over conventional algorithms such as backpropagation algorithms and conventional GA-based algorithm.
关 键 词:模糊基函数网络 自适应最小二乘法 表面粗糙度预测 外圆纵向磨削 遗传算法
分 类 号:TG580.6[金属学及工艺—金属切削加工及机床] TH164[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.70